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Pattern recognition in a neural network with chaos
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~Received 17 February 1998; revised manuscript received 6 May 1998!

Chaos is introduced into the Gardner model@J. Phys. A21, 257 ~1988!; 22, 1969~1989!# by reducing the
number of connections among neurons. It is shown that patterns can be recognized in this chaotic model by
means of chaos control focusing on the history of evolution of the states. Fixed points are not required for
pattern recognition in this scheme.@S1063-651X~98!11109-1#

PACS number~s!: 87.10.1e, 05.45.1b, 75.10.Nr
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Chaos in neural networks has attracted much interes
recent years~see, for example,@1–5#!. There are speculation
that chaos plays important roles in neural networks. Ho
ever, a definitive study on the role of chaos in neural n
works is still missing. A fully developed chaotic networ
does not have any disjoint open set in the phase space, m
ing that every point can be reached from every other poin
running the dynamics. How can such a network perform
formation processing such as pattern recognition? This is
important and nontrivial question to answer. In this work w
address this issue of pattern recognition using a model
otic network obtained from the well known Gardner mod
@6#.

Tsuda@3# has presented a model for a dynamic link
memory in nonequilibrium neural network. Adachi an
Aihara, Nagashimaet al.,and Naraet al. @4# have shown that
in the presence of chaos the dynamics wanders among
learned patterns. It is not clear how the correct memory
retrieved from the wandering dynamics. Kushibeet al. used
the parameter control to carry out recognition by reducin
chaotic model to the Hopfield model@5#. In this paper we
demonstrate numerically that the history of trajectories c
tains information about patterns and we propose an appro
to extract this hidden information. Our ansatz is based
synchronization of chaotic systems using the feedb
method. In what follows, we first introduce chaos in t
Gardner model and then discuss the process of pattern
ognition. In the Gardner model@6#, N neurons arefully con-
nected to one another through the synapsesJi j ( i , j
51, . . . ,N). The stateSi(t) of the i th neuron at timet is the
spin variableSi(t)561. In order to storep patterns,j i

m

561,m51, . . . ,p, the synapses are trained so that the c
dition

1

AN
j i

m(
j Þ i

Ji j j j
m.K>0, m51, . . . ,p, ~1!

is satisfied. This model can work as an associate memor
is capable of remembering a maximum of 2N patterns and
retrieving these patterns, based on partial information ab
them @6–10#. The patterns coded in synapses are the fi
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points under the dynamics of the system. The storage ca
ity a5 limN→`p/N is well known @6# to depend onK as

a5F E
2K

1` ~ t1K !2

A2p
e2t2/2dtG21

,

when the net has a maximal~saturation! storage, as to be
discussed in this paper. For example,K52.00, 1.00, and
0.68 correspond toa50.20, 0.52, and 0.76, respectivel
The limit a52 is reached whenK50. The larger the param
eter K, the smaller the storage capacity and the larger
basins of fixed points. Details of the Gardner model a
available in the literature. In the following, we will discus
the relationship among pattern recognition, storage capa
and chaotic behavior in the model. Without a loss of gen
ality, we treat the net with maximal storage. Our resu
show that the ability of recognition depends onK ~or storage
capacitya), the initial condition, and the number of syn
apses removed randomly. The net withN580 is used to
generate the bulk of our results since this choice gives r
able thermodynamic approximations@10#. We will also dis-
cuss below the size effects of the net.

Now we introduce chaos into this model by cutting ra
domly a number of synapses. Chaos appears if a neuro
connected to fewer than the maximum ofN21 neurons in a
network of N neurons. The number of missing synaps
chosen randomly, is represented as a fractionc of the total
N21 synapses for any neuron. This way of introduci
chaos could be significant since a network with partially co
nected neurons is similar to the human brain in which
neurons are not fully connected@11# and the loss of synaptic
connections in the human brain may also occur becaus
brain damage@2#. In the Gardner model, the cutting off o
synapses~CUTS! has been discussed earlier as a diluted
proach@12#, where the effect of the dilution on the retriev
of patterns corresponding to the fixed points was conside
However, the existing work concentrates exclusively on
concept of pattern recognition being persistent under dyn
ics without any analysis of its relation to chaos.

We first show that chaos is indeed introduced in this w
The usual way to identify chaos in a system is to calcul
the Lyapunov exponents or autocorrelation function@13,14#.
We have used both of these techniques to examine the p
ence of chaos. Here we present only the results of the ca
lation of autocorrelation function, which is defined as
3649 © 1998 The American Physical Society
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FIG. 1. Autocorrelation function of the Gardner model ofN
580 atK52 for c50 ~triangles!, 0.5 ~crosses!, 0.6 ~asterisks!, and
0.8 ~circles!. Points are linked for a better perception.
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C~t!5 lim
T→`

1

T(
t50

T

Si~ t !Si~ t1t!, ~2!

whereSi(t) is the state of neuroni at time t. C(t) is inde-
pendent of the choice ofi . The criterion of the autocorrela
tion function states that ifC(t) is a decreasing function oft,
the system is chaotic. The speed at whichC(t) decreases is
related to the rate at which the systems turns chaotic. T
dependence ofC(t) on t is presented in Fig. 1 forN580.
The figure shows that whenc50, C(t) remains a constan
while for c.0, C(t) decreases from a finite value to zer
For larger values ofc, C(t) goes to zero faster, implying a
rapid growth of chaotic behavior. It should be pointed o
that C(t) is also dependent onK. For smaller K ~not
shown!, even a smallc will produce chaos.

When chaos is introduced, the network dynamics will n
drive an initial state to a fixed point~pattern! as in the non-
chaotic model without CUTS. The condition~1! is violated
and patternsjm are no longer the fixed points. In fact,
chaotic system has a large number of unstable period or
@15,16#. Although the dynamics does not drive an initial sta
to a fixed point, patterns may still be recognized. The sy
apses are trained before the CUTS and therefore we bel
that some information about the patterns may still be pres
in the remainingJi j . Before a fully chaotic behavior sets in
it may be possible to use the network for pattern identific
tion. We are pointing here to short-term memories. The pr
lem now is to extract this information, if there is any. To th
end, we turn to synchronization of identical chaotic system
The approach to synchronization of chaotic trajectories is
unique @15,16#. Here we utilize the feedback method pro
posed in@15# and select the trajectory stimulated initially b
FIG. 2. Dynamic distancesd1(t) ~circles! andd2(t) ~crosses! vs time t in the fully connected Gardner model (c50) for d1(0)51: ~a!
K52 andk50.08 and~b! K50.68 andk50.3. The pattern can@cannot# be recognized in~a! @~b!#.
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FIG. 3. Dynamic distancesd1(t) ~circles! andd2(t) ~crosses! vs time t for K52 andd1(0)50.6: ~a! c50.5 andk50.025 and~b! c
50.6 andk50.32. The pattern can@cannot# be recognized in~a! @~b!#.

FIG. 4. Dynamic distancesd1(t) ~circles! and d2(t) ~crosses! vs time t for ~a! K51.5, c50.5, k50.4, andd1(0)50.6 and~b! K
52, c50.49, k50.045, d1(0)50.6, andN5200. The pattern can@cannot# be recognized in~b! @~a!#.
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a pattern~e.g.,j1) as the desired orbit and synchronize oth
chaotic trajectories to this orbit. We try to get useful info
mation during the synchronization.

We denote the desired trajectory asz1(t) with z1(0)
5j1 and a trajectory to be synchronized ass(t), which is
nearj1 at t50. The relation betweenz1(t) ands(t) is mea-
sured by a dynamic distance

d1~ t !5K 1

N (
i 51

N

@si~ t !2z i
1~ t !#2L

j

, ~3!

where^&j means the average over random patternsj in the
Gardner model@6–9#. d1(0) gives the initial distance. Al-
thoughz1(t) is not j1, it is generated byj1 and in a deter-
ministic chaotic system it is unique. Therefore, we ‘‘tran
fer’’ j1 to z1(t). If d1(t) goes to zero~or a small value!, j1

is retrieved froms(0) containing only partial information o
j1. In this chaotic model, the dynamics will drives(t) away
from z1(t). d1(t.0) is larger thand1(0). However, if at
every dynamic step we ‘‘help’’s(t) to go a little bit closer to
z1(t), we may get useful results. This is just the idea
chaos control by feedback. We now turn to chaos control
try to perform recognition in the chaotic system. The fee
back is imposed by modifying the trajectorys(t) at time t
with

si~ t !→si
f~ t !5si~ t !1k@z i

1~ t !2si~ t !#, i 51, . . . ,N,
~4!

where 0,k,1 is a constant called hereafter the feedba
strength. Fork50, there is no feedback; fork51, the trajec-
tory is modified immediately to be the desired one. The s
is sf(t) after the feedback process is utilized for the ne
dynamics. Because the feedback is applied directly an
every time step to the output of the system,sf(t) will be
driven toz1(t) after a sufficiently long time depending onk.
After the synchronization, the feedback term goes to z
and the distance in Eq.~3! vanishes. However, we canno
believe thatd1(t)50 in this case means thats(t) is recog-
nized becauses(t) may be synchronized in the same w
with all other trajectoriesz2, . . . ,zp coming initially from
other patterns,j2, . . . ,jp, respectively. Therefore, we nee
another criterion to distinguish between the synchronized
bits.

The criterion that we have used in this work is based
the ‘‘time of synchronization.’’ The phrase time of synchr
nization ~TOS! is used here in a limited sense. The TOS
the time required for the distance between the drive and
sponse systems to become less than a preset valued0 . Ac-
cording to this criterion, the TOS tells us which~target! pat-

TABLE I. Critical values of c vs K for d1(0)50.6 and N
580. The numbers in parentheses are the values ofa.

K c

3.00 ~0.1! 0.76
2.50 ~0.14! 0.66
2.00 ~0.20! 0.50
1.50 ~0.31! 0.32
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tern is retrieved. More precisely, we denotedm(t) as the
distance by replacing index 1 in Eq.~3! with m. The shortest
time

t r5min$t1, . . . ,tp%, ~5!

wheretm satisfy

dm~ tm!,d0 , m51, . . . ,p, ~6!

determines that patternr is the target pattern. Hered0 is a
small number. If the shortest timet r does not exist~the
tm, m51, . . . ,p, are close to one another befored0 is
reached!, then the recognition fails. In practice we do n
have to compare all distances because after the averag
Eq. ~3! all patterns are equivalent. Below we sets(0) to be
related toj1 with the initial distanced1(0) and compare the
distanced1(t) betweens(t) andz1(t) and the distanced2(t)
betweens(t) and an arbitrary trajectory; seez2(t) starting
from j2. Since the patterns are randomly orthogonal,d2(0)
is 2. In the following, we choosed050.02.

The approach has been first checked for the fully c
nected Gardner model (c50). Figures 2~a! and 2~b! give the
distancesd1(t) ~circles! and d2(t) ~crosses! versust with
initial distanced1(0)51 for K52 and 0.68, respectively. In
Fig. 2~a! d1(t) is always smaller thand2(t) and this leads to
the result thatt1 is smaller thant2, while in Fig. 2~b! d1(t)
andd2(t) have the same value after certain steps. Theref
according to our discussion, the network is able to retrie
patternj1 in Fig. 2~a! but not in Fig. 2~b!. This is in agree-
ment with the well-known results obtained by means of fix
points @7–9#.

FIG. 5. Dynamic distancesd1(t) ~circles! and d2(t) ~crosses!
started from two random states forK52, d1(0)50.2, c50.5, and
k50.023. The distances are indistinguishable after certain step
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Now we turn to the chaotic model. Figure 3 gives t
dynamic distanced1(t) ~circles! andd2(t) ~crosses! versust
for K52, d1(0)50.6, and different fractions of CUTS an
feedback strengths. In Fig. 3~a! with c50.5, d1(t) goes to
zero much faster thand2(t) and this implies thatt1 is smaller
than t2 when the condition~6! is fulfilled. Whenc50.6 in
Fig. 3~b!, we cannot find any difference betweend1(t) and
d2(t) after certain steps. This will not lead to differentt1 and
t2 when the condition~6! is satisfied. Therefore, the patte
is recognized in Fig. 3~a! but not in Fig. 3~b!.

It is natural that whenc is small, the structure of the fully
connected model will not be affected dramatically. Specia
when the fixed points have larger basins~e.g., K52), i.e.,
smaller storagea, the strong convergent tendency persis
When c is large, things change noticeably. When the ba
gets smaller~storage gets larger!, even small CUTS may
produce chaos.

Figure 4~a! shows the effect of the basin~storage capac
ity!. Compared with Fig. 3~a! for K52(a50.2), Fig. 4~a!
for K51.5 (a50.31) does not give distinguishablet1 and
t2 when the condition~6! is valid. The recognition thus fails
in Fig. 4~a!. In order to check if there is any size effect, w
treated a net withN5200 andK52. The results are given in
Fig. 4~b!. Comparing Fig. 3~a! (N580 andK52) and Fig.
4~b! (N5200 andK52), we believe that, for pattern recog
nition, our results represent largeN ~thermodynamic! behav-
iors. We have also checked the nets withN540, 80, and 160
and have found that the results for different sizes are qu
tatively the same, except for some quantitative differenc
Our results of the effects of different sizes are in agreem
with the discussions given in@10#.

In short, the ability of recognition depends on the para
etersK ~which determines the basins of the fully connect
nonchaotic model!, c ~which defines the fraction of CUTS!,
J.
,

.
n

li-
s.
nt

-

and d1(0) ~which is the initial distance!. Table I gives the
critical values ofc as a function ofK for d1(0)50.6 and
N580. The numbers in parentheses are the correspon
values ofa. If the cut ratiosc are below the values listed in
the table, the recognition is successful; otherwise patte
cannot be recognized. It may be pointed out that the qua
tive property is not sensitive to the feedback strengthk. k
determines the time required for satisfying the condition~6!
and does not affect the order in magnitudes among diffe
tm.

Using chaos control and the criterion of time of synchr
nization, we have shown that the information hidden in t
history of evolution can be exploited. When chaos exists,
process of pattern recognition can be performed in this w
We emphasize that this conclusion is related not only to
initial condition, but also to the structure of the network th
has embedded the patterns into synapsesJi j . This can be
verified by startingz1 andz2 by two random states instead o
j1 and j2. Figure 5 gives the distanced1(t) betweenz1(t)
and s(t) and the distanced2(t) betweenz2(t) and s(t).
Even for very small initial distance@d1(t)50.2# and strong
convergent tendency (K52), d1(t) and d2(t) quickly be-
come similar and we cannot treat them the way we did
Fig. 3~a!. This is not surprising because the initial rando
states are not stored in theJi j . The network ‘‘does not
know’’ the random states. The approach of pattern recog
tion in chaotic networks proposed in this paper can be ea
applied to other chaotic systems. It may be interesting
study the effects of gradual and sudden cutoffs~or regenera-
tion! of synapses on such issues as metastable states@17#.

The work has been supported through a grant to M. K.
from the Defence Research Establishment Suffield under
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. A

-

@1# C. A. Skarda and W. J. Freeman, Behav. Brain Sci.10, 161
~1987!.

@2# J. Glanz, Science277, 1758~1997!.
@3# I. Tsuda, Neural Networks5, 313 ~1992!.
@4# M. Adachi and K. Aihara, Neural Networks10, 83 ~1997!; T.

Nagashima, J. Miyazaki, Y. Shiroki, and I. Tokuda, Int.
Chaos Theory Appl.2, 1 ~1997!; S. Nara, P. Davis, M. Kawa-
chi, and H. Totsuji, Int. J. Bifurcation Chaos Appl. Sci. Eng.5,
1205 ~1995!.

@5# M. Kushibe, Y. Liu, and J. Ohtsubo, Phys. Rev. E53, 4502
~1995!.

@6# E. Gardner, J. Phys. A21, 257 ~1988!.
@7# E. Gardner, J. Phys. A22, 1969~1989!.
@8# T. B. Kepler and L. F. Abbott, J. Phys.~Paris! 49, 1657~1988!.
@9# Z. Tan and L. Schu¨lke, Int. J. Mod. Phys. B26, 3549~1996!.

@10# W. Krauth and M. Mezard, J. Phys. A20, L745 ~1987!.
@11# J. W. Clark, Phys. Rep.158, 91 ~1988!.
@12# M. Bouten, A. Engel, A. Komoda, and R. Serneels, J. Phys

23, 4643~1990!.
@13# A. J. Lichtenberg and M. A. Lieberman,Regular and Stochas

tic Motion ~Springer-Verlag, Berlin, 1983!.
@14# P. W. Milonni, M.-L. Shih, and J. R. Ackerhalt,Chaos in

Laser-Matter Interaction~World Scientific, Singapore, 1987!.
@15# K. Pyragas, Phys. Lett. A170, 421 ~1992!.
@16# M. K. Ali and J.-Q. Fang, Phys. Rev. E55, 5285~1997!.
@17# Z. Tan and M. K. Ali, Phys. Rev. E57 R3739~1998!.


