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Pattern recognition in a neural network with chaos
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Chaos is introduced into the Gardner mofklPhys. A21, 257 (1988; 22, 1969(1989] by reducing the
number of connections among neurons. It is shown that patterns can be recognized in this chaotic model by
means of chaos control focusing on the history of evolution of the states. Fixed points are not required for
pattern recognition in this schemé&1063-651X98)11109-1

PACS numbd(s): 87.10+¢e, 05.45+b, 75.10.Nr

Chaos in neural networks has attracted much interest ipoints under the dynamics of the system. The storage capac-
recent yearsgsee, for exampld,1-5]). There are speculations ity a=Ilimy_.p/N is well known[6] to depend orK as
that chaos plays important roles in neural networks. How-

ever, a definitive study on the role of chaos in neural net- o (1+K)2 -1
. . N ; —t22
works is still missing. A fully developed chaotic network a= J —e dt|

does not have any disjoint open set in the phase space, mean- —K N2

ing that every point can be reached from every other point by
running the dynamics. How can such a network perform inwhen the net has a maximé&aturation storage, as to be
formation processing such as pattern recognition? This is adiscussed in this paper. For exampk=2.00, 1.00, and
important and nontrivial question to answer. In this work we0.68 correspond tax=0.20, 0.52, and 0.76, respectively.
address this issue of pattern recognition using a model ch&Fhe limit «=2 is reached wheK =0. The larger the param-
otic network obtained from the well known Gardner modeleter K, the smaller the storage capacity and the larger the
[6]. basins of fixed points. Details of the Gardner model are
Tsuda[3] has presented a model for a dynamic link of available in the literature. In the following, we will discuss
memory in nonequilibrium neural network. Adachi and the relationship among pattern recognition, storage capacity,
Aihara, Nagashimat al.,and Narzet al.[4] have shown that and chaotic behavior in the model. Without a loss of gener-
in the presence of chaos the dynamics wanders among thaity, we treat the net with maximal storage. Our results
learned patterns. It is not clear how the correct memory ishow that the ability of recognition dependsér{or storage
retrieved from the wandering dynamics. Kushiteal. used  capacity «), the initial condition, and the number of syn-
the parameter control to carry out recognition by reducing apses removed randomly. The net wikh=80 is used to
chaotic model to the Hopfield modgb]. In this paper we generate the bulk of our results since this choice gives reli-
demonstrate numerically that the history of trajectories conable thermodynamic approximatiofis0]. We will also dis-
tains information about patterns and we propose an approaciuss below the size effects of the net.
to extract this hidden information. Our ansatz is based on Now we introduce chaos into this model by cutting ran-
synchronization of chaotic systems using the feedbacllomly a number of synapses. Chaos appears if a neuron is
method. In what follows, we first introduce chaos in the connected to fewer than the maximumMf 1 neurons in a
Gardner model and then discuss the process of pattern regetwork of N neurons. The number of missing synapses,
ognition. In the Gardner modg6], N neurons aréully con-  chosen randomly, is represented as a fractiasf the total
nected to one another through the synapsks (i,j  N-—1 synapses for any neuron. This way of introducing

=1,... N). The state5(t) of theith neuron at time isthe  chaos could be significant since a network with partially con-
spin variableS(t)==1. In order to storep patterns,&  nected neurons is similar to the human brain in which the
=+1u=1,...p, the synapses are trained so that the conneurons are not fully connectétil] and the loss of synaptic
dition connections in the human brain may also occur because of

brain damagé?2]. In the Gardner model, the cutting off of
L synapsesCUTS) has been discussed earlier as a diluted ap-
. proach[12], where the effect of the dilution on the retrieval
\/_ﬁgiﬂjzﬂ Jij§f>K=0, pu=1,...p, @) of patterns corresponding to the fixed points was considered.
However, the existing work concentrates exclusively on the
concept of pattern recognition being persistent under dynam-
is satisfied. This model can work as an associate memory: Its without any analysis of its relation to chaos.
is capable of remembering a maximum dfl Jatterns and We first show that chaos is indeed introduced in this way.
retrieving these patterns, based on partial information abouthe usual way to identify chaos in a system is to calculate
them [6—10Q. The patterns coded in synapses are the fixedhe Lyapunov exponents or autocorrelation func{in@,14.
We have used both of these techniques to examine the pres-
ence of chaos. Here we present only the results of the calcu-
*Electronic address: ali@hg.uleth.ca lation of autocorrelation function, which is defined as
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FIG. 1. Autocorrelation function of the Gardner model f
=80 atK=2 for c=0 (triangles, 0.5 (crosse} 0.6 (asterisky and
0.8 (circles. Points are linked for a better perception.
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whereS;(t) is the state of neuronat timet. C(7) is inde-
pendent of the choice af The criterion of the autocorrela-
tion function states that i€ () is a decreasing function of,

the system is chaotic. The speed at whigty) decreases is
related to the rate at which the systems turns chaotic. The
dependence oE(7) on 7 is presented in Fig. 1 foN=80.
The figure shows that wher=0, C(7) remains a constant
while for c>0, C(7) decreases from a finite value to zero.
For larger values of, C(7) goes to zero faster, implying a
rapid growth of chaotic behavior. It should be pointed out
that C(7) is also dependent oK. For smallerK (not
shown), even a smalt will produce chaos.

When chaos is introduced, the network dynamics will not
drive an initial state to a fixed poiripattern) as in the non-
chaotic model without CUTS. The conditiqd) is violated
and patternst* are no longer the fixed points. In fact, a
chaotic system has a large number of unstable period orbits
[15,14. Although the dynamics does not drive an initial state
to a fixed point, patterns may still be recognized. The syn-
apses are trained before the CUTS and therefore we believe
that some information about the patterns may still be present
in the remainingl;; . Before a fully chaotic behavior sets in,
it may be possible to use the network for pattern identifica-
tion. We are pointing here to short-term memories. The prob-
lem now is to extract this information, if there is any. To this
end, we turn to synchronization of identical chaotic systems.
The approach to synchronization of chaotic trajectories is not
unique[15,16. Here we utilize the feedback method pro-
posed in15] and select the trajectory stimulated initially by
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FIG. 2. Dynamic distanceg(t) (circles andd?(t) (crossesvs timet in the fully connected Gardner modal<0) for d*(0)=1: (8
K=2 andk=0.08 and(b) K=0.68 andk=0.3. The pattern cajtannot be recognized irfa) [(b)].
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FIG. 3. Dynamic distanced!(t) (circles andd?(t) (crossesvs timet for K=2 andd*(0)=0.6: (8) c¢=0.5 andk=0.025 and(b) ¢
=0.6 andk=0.32. The pattern cajtannot be recognized irfa) [(b)].
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FIG. 4. Dynamic distanced'(t) (circles and d?(t) (crossesvs timet for (a) K=1.5, ¢=0.5, k=0.4,

andd(0)=0.6 and(b) K
=2, ¢=0.49, k=0.045, d*(0)=0.6, andN=200. The pattern cajtannoi be recognized irfb) [(a)].
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TABLE |I. Critical values ofc vs K for d'(0)=0.6 andN
=80. The numbers in parentheses are the values. of

2.5

K c

3.00(0.1 0.76 ~E -
2.50(0.19 0.66 1
2.00(0.20 0.50
1.50(0.3)) 0.32

1.5

a patterne.g.,£') as the desired orbit and synchronize other
chaotic trajectories to this orbit. We try to get useful infor-
mation during the synchronization. I o ]
We denote the desired trajectory g&(t) with £1(0) e ]
=¢1 and a trajectory to be synchronized s($), which is %"%} .
nearé! att=0. The relation betweefi'(t) ands(t) is mea- - %,
sured by a dynamic distance I -

a'(t),d(t)

1 N
0={ 52, [si<t>—z:%<t>]2> , @3
4

where(), means the average over random pattefmis the . ,
Gardner mode[6-9]. d*(0) gives the initial distance. Al- 0 500 1000 1500 2000
though£1(t) is not &%, it is generated by! and in a deter- t

ministic chaotic system it is unique. Therefore, we “trans- g 5 Dynamic distanced’(t) (circles and d2(t) (crosses
fer” &' to £'(t). If d'(t) goes to zerdor a small valug &' started from two random states fié=2, d*(0)=0.2, c=0.5, and

is retrieved froms(0) containing only partial information of  k=0.023. The distances are indistinguishable after certain steps.
£L. In this chaotic model, the dynamics will driwét) away

from £'(t). d'(t>0) is larger thand'(0). However, if at  tern is retrieved. More precisely, we denalé(t) as the

every dynamic step we “help’(t) to go a little bit closer to  distance by replacing index 1 in E@) with «. The shortest
ZY(t), we may get useful results. This is just the idea oftime
chaos control by feedback. We now turn to chaos control and

try to perform recognition in the chaotic system. The feed- t"=min{t, ... tP}, (5)
back is imposed by modifying the trajectosft) at timet
with wheret* satisfy
si()—s{()=s(H+K(D-s(D], i=1,...N, di(t*)<do, m=1,...p, (6)
4

determines that pattemnis the target pattern. Hemd, is a
where 0<k<1 is a constant called hereafter the feedbacksmall number. If the shortest timeé does not exist(the
strength. Fok=0, there is no feedback; fé= 1, the trajec- t*, u=1,...p, are close to one another befodg is
tory is modified immediately to be the desired one. The statéeachedi then the recognition fails. In practice we do not
is sf(t) after the feedback process is utilized for the nexthave to compare all distances because after the average in
dynamics. Because the feedback is applied directly and dtd. (3) all patterns are equivalent. Below we s¢0) to be
every time step to the output of the systesi(t) will be  related to&' with the initial distanced!(0) and compare the
driven toZ1(t) after a sufficiently long time depending &n distanced(t) betweers(t) and(t) and the distancd?(t)
After the synchronization, the feedback term goes to zerdetweens(t) and an arbitrary trajectory; se#(t) starting
and the distance in Eq3) vanishes. However, we cannot from ¢2. Since the patterns are randomly orthogond(0)
believe thatd(t)=0 in this case means tha(t) is recog- is 2. In the following, we choosdy=0.02.
nized becausa(t) may be synchronized in the same way The approach has been first checked for the fully con-
with all other trajectories?, ..., coming initially from  nected Gardner modet & 0). Figures 2a) and 2b) give the

other patternsé?, . .. £, respectively. Therefore, we need distancesd’(t) (circles and d?(t) (crossep versust with
another criterion to distinguish between the synchronized orinitial distanced'(0)=1 for K=2 and 0.68, respectively. In
bits. Fig. 2a) d*(t) is always smaller thad?(t) and this leads to

The criterion that we have used in this work is based orthe result that® is smaller thart?, while in Fig. 2b) d*(t)
the “time of synchronization.” The phrase time of synchro- andd?(t) have the same value after certain steps. Therefore,
nization (TOS) is used here in a limited sense. The TOS isaccording to our discussion, the network is able to retrieve
the time required for the distance between the drive and repatterné® in Fig. 2(@) but not in Fig. Zb). This is in agree-
sponse systems to become less than a preset dgludc-  ment with the well-known results obtained by means of fixed
cording to this criterion, the TOS tells us whiffarge} pat-  points[7-9].
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Now we turn to the chaotic model. Figure 3 gives theand d'(0) (which is the initial distance Table | gives the
dynamic distance(t) (circles andd?(t) (crossesversust critical values ofc as a function ofK for d(0)=0.6 and
for K=2, d*(0)=0.6, and different fractions of CUTS and N=80. The numbers in parentheses are the corresponding
feedback strengths. In Fig(8 with c=0.5, d'(t) goes to  values ofa. If the cut ratiosc are below the values listed in
zero much faster thati?(t) and this implies that" is smaller  the table, the recognition is successful; otherwise patterns
thant? when the conditior(6) is fulfilled. Whenc=0.6 in  cannot be recognized. It may be pointed out that the qualita-
Fig. 3b), we cannot find any difference betwed(t) and  tive property is not sensitive to the feedback strerigttk
d?(t) after certain steps. This will not lead to differaftand determines the time required for satisfying the conditién

FZ when the conditior(6) is satisfied. Therefore, the pattern 414 does not affect the order in magnitudes among different
is recognized in Fig. &) but not in Fig. 3b).

It is natural that wher is small, the structure of the fully
connected model will not be affected dramatically. Specially,ni
when the fixed points have larger basi@sg., K=2), i.e.,
smaller storagex, the strong convergent tendency persists.
Whenc is large, things change noticeably. When the basi
gets smaller(storage gets larggreven small CUTS may
produce chaos.

Figure 4a) shows the effect of the basistorage capac-
ity). Compared with Fig. @ for K=2(a«=0.2), Fig. 4a)
for K=1.5 (@=0.31) does not give distinguishabi®e and
t? when the conditior{6) is valid. The recognition thus fails
in Fig. 4(a). In order to check if there is any size effect, we
treated a net wittN=200 andK = 2. The results are given in
Fig. 4b). Comparing Fig. 8) (N=80 andK=2) and Fig.
4(b) (N=200 andK =2), we believe that, for pattern recog-

g:?n\}v%urzgszu;z;i%fs;;; It?]rgﬁg?sem;iyonagrgm:fy?\éb know” the random states. The approach of pattern recogni-
' T tion in chaotic networks proposed in this paper can be easily

?Qslgav;éoggr?]éhaetxtchee {izl:lgsozé d'gg;?irt‘;ﬂs\'lzeezif?éfeﬂzggépplied to other chaotic systems. It may be interesting to
y ' P q itudy the effects of gradual and sudden cutéfisregenera-

Our results of the effects of different sizes are in agreemeng :
with the discussions given 0], rl[on) of synapses on such issues as metastable $tates

In short, the ability of recognition depends on the param- The work has been supported through a grant to M. K. A.
etersK (which determines the basins of the fully connectedfrom the Defence Research Establishment Suffield under the
nonchaotic mode¢) ¢ (which defines the fraction of CUTS Contract No. W7702-6-R607/001/EDM.

Using chaos control and the criterion of time of synchro-
zation, we have shown that the information hidden in the
history of evolution can be exploited. When chaos exists, the

rocess of pattern recognition can be performed in this way.

e emphasize that this conclusion is related not only to the
initial condition, but also to the structure of the network that
has embedded the patterns into synapkes This can be
verified by starting’? andZ? by two random states instead of
& and £2. Figure 5 gives the distana#'(t) between?'(t)
and s(t) and the distancel?(t) between/?(t) and s(t).
Even for very small initial distancpd®(t)=0.2] and strong
convergent tendencyK(=2), d*(t) andd?(t) quickly be-
come similar and we cannot treat them the way we did in
Fig. 3(@. This is not surprising because the initial random
states are not stored in thk;. The network “does not
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